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COMMENT 

The coherent-state method of evaluating the density matrix for 
an oscillator in a constant magnetic field 

Gong Renshan 
Department of Physics, Jiangxi University, Nanchang, Jiangxi, People's Republic of China 

Received 23 January 1990 

Abstract. The coherent-state method is proposed for evaluating the Bloch density matrix 
for a charged isotropic oscillator placed in a constant magnetic field. The method first 
reduces the Bloch equation, satisfied by the density matrix e-p', to a partial differential 
equation by means of the coherent-state representation, and then calculates the density 
matrix. A generalised problem in which a uniform electric field coexists is also discussed. 

1. Introduction 

Recently considerable interest has arisen in the evaluation of the Bloch density matrix 
(rl exp( -/3fi)lr') for a three-dimensional charged oscillator placed in a constant mag- 
netic field [l-41. It is true that all of these treatments have their own merits, but it is 
also undeniable that they rely more or less on involved manipulations. In this comment, 
therefore, we develop an alternative method which is much simpler both in principle 
and in practice. Jn this method we first f o w s  our attention on the Bloch equation, 
which is satisfied by the density matrix e-PH, in the coherent-state representation and 
try to reduce it to a partial differential equation. Once the solutions of this equation 
are obtained, the evaluation of the Bloch density matrix element is a relatively simple 
matter. Then the Bloch density matrix for a three-dimensional charged isotropic 
oscillator placed in a constant magnetic field can be calculated. A generalised problem 
in which a uniform electric field coexists is also discussed. 

2. The Bloch equation in the coherent-state representation 

The standard coherent-state Ip) for N degrees of freedom is defined by [5-71 

where 

[ n l = ( n , ,  n 2 , .  . * 3 nN) [n]! = n,! n,! . . . nN ! 
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while the integration measure is 
N N 

i = l  J = i  
d m ( p )  = 7 ~ - ~  n n d Re p, d Im pJ. 

Thus the scalar product (Alp) may be written as 

(Alp) = exp(-flA12-$Ip12+ip) (3) 
where bar stands for conjugate complex and ( A I A )  = 1. The completeness relation is 

Let us consider a system denoted by A(a; ,  a,) ( j  = 1 ,2 , .  . . , N ) ,  which is in the Wick 
order. The Bloch density matrix p = eePH ( P  = l /kT) satisfies the following Bloch 
equation: 

Introducing the distribution function F ( i ,  p ;  P )  defined by 

m, w ;  P )  = e x P ( f l ~ I ’ + f l ~ l 2 ) ( ~ I ~ l ~ )  

and with the help of the following formulae 

and the fact that A ( a : ,  a j )  is a Hermitian operator leads to 

L * ( i )  = L(A) .  (13) 

a - F(X, p ;  P )  = -;[L*(X)+ L(p)IF(X, p ;  P ) .  JP 

Thus the Bloch equation ( 5 )  can be converted into a partial differential equation 

(14) 
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It is clear from (6) that the 'initial' condition at p = 0 ( T  + 00) is 

lim F(A, p ;  p )  = F,(A, p )  = exp. (15) 
D -0 

Therefore, the formal solution of (14) is given with the help of (15) by 

F(L p ;  p )  =~~P{-~P[L*(~)+L(cL)I}F~(A, K ) .  (16) 

If we find a set of orthonormal eigenfunctions of L(p )  which is denoted by { ( ~ ~ ( p ) }  

L(cL)(P/(P) = A d + )  (17) 

(18) 

(19) 

c cp/(A)(P/(P) = Fo(L C L )  = e h F  
/ 

[ d m ( p )  e-'F'2cp1(P)(Pk(P*.) = &k 

where A/,  which is the lth eigenvalue of L(p) ,  is real by nature and ~ ( p )  is an entire 
analytical function of respective arguments p,, then the distribution function F ( 1 ,  p ;  p )  
can be written as 

(20) Ni, p ;  P I  = E  e-'lPcp/(A)vdp). 

3. Oscillator placed in a constant magnetic field 

The Hamiltonian of the system is given (in the natural units h = c = 1) by 

1 
2m 

fi =- ( p  - eA)'+$mf 2rz  

where f > 0 is a constant. Assuming that the direction of the magnetic field is parallel 
to the x3 axis and the strength is denoted by E, the vector potential may be taken as 
A = (-$%x2, $Ex l ,  0 ) .  Introducing the oscillator operators 

where w, =-E wo ( j  = 1,2), w3 = f and w = eE/2m, the Hamiltonian (21) may 
be written as 

where ~ 0 = $ ( ~ 1 + ~ 2 + ~ 3 ) .  It is clear that the operator L(p )  in (17) is 

a a a a a + mopl  -+ w o k 2  -+ w 3 p 3  -+ i w p 2  - - i w p l  - 
aCL I aP2 acL3 aCL I acc.2 

L ( p  1 = (24) 

and in this case, the eigenfunctions and eigenvalues of (17) are 

Aim,, = Eo+ (wo+ w ) l +  ( w o -  w)m + w3n ( l ,m ,n=O,  1,2 , . . .  ). (26) 
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Therefore, the distribution function F ( 1 ,  p ;  p )  can be directly obtained from (20) 

~(i, p ;  ~ ) = e - ~ ' o e x p { f e - ~ ' " ~ + ~ ' ( i ~ - i 1 ~ ) ( ~ ~ ~ + i ~ ~ ~ )  

+; e-P(wo-") (1, + ih2)(wI - ip2) + e-@"3i3p3}. (27) 

Furthermore, using the explicit expression for the coherent-state in the coordinate 
representation 

( r l A )  = (~)3'4(010203)1'4 

and the integration formula 

1 exp[ -abc + b2g + c2f  
a2  - 4fg 

dm(z) exp(a(zj2+bz+c.Z+fz2+gZ2)= 

(29) 
(Re(a + f + g)  < 0, Re(a2 -4fg) > 0 or Re( a -f- g)  < 0, Re(a2 -4fg) > 0) 

the elements of the density matrix in the coordinate representation may be easily 
obtained 

(rlblr') = I dm(A) dm(CL)(rlA>(AI~ltL)(CLlr') 

sinh' P o o  sinh P o 3  

xexp{ [-(x:+x;') cosh P w ~ + ~ x ~ x ; ]  
2 sinh P o 3  

+i2(x~x2+x;x l )  sinh P o ]  (30) 

which is in agreement with [2]. 

4. The case when a uniform electric field coexists 

With a slight 
case in which 
becomes 

modification the same method can also be applicable to a generalised 
a uniform electric field E = ( E , ,  E ? ,  E 3 )  coexists. The Hamiltonian now 

1 
2m 

= 1 ( u,' up, +xu,  +$a, ) + i o  ( a a, - a a , + .so 

Ae = - ( p  - e A ) 2 + f m f  ' r 2 +  eE.  r 

J = 1.2.3 
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where 
be written as 

= e E j / m  ( j  = 1,2,3) .  With this Hamiltonian, the operator in (17) may 

Accordingly, the eigenfunctions and eigenvalues of Le( p )  can be easily obtained 

A:,,,,, = E ; +  (wo+ w ) l +  ( wo - w ) m  + w3n 

where 

E ; =  E o -  f:+f,’ - I-:+fi -g 
2(wo+w) 2(w0-w) w j  

The calculations of F e ( i ,  p ;  /?) and (r(p*elr‘) are trivial, so we omit them here. 
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